
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Multi-Client Boolean File Retrieval with
Adaptable Authorization Switching for Secure

Cloud Search Services
Kai Zhang, Xiwen Wang, Jianting Ning, Mi Wen, Member, IEEE, and Rongxing Lu, Fellow, IEEE

Abstract—Secure cloud search services provide a cost-effective way for resource-constrained clients to search encrypted files in the
cloud, where data owners can customize search authorization. Despite providing fine-grained authorization, traditional attribute-based
keyword search (ABKS) solutions generally support single keyword search. Towards expressive queries over encrypted data,
multi-client searchable symmetric encryption (MC-SSE) was introduced. However, current search authorizations of existing MC-SSEs:
(i) cannot support dynamic updating; (ii) are (semi-)black-box implementations of attribute-based encryption; (iii) incur significant cost
during system initialization and file encryption. To address these limitations, we present AasBirch, an MC-SSE system with fast
fine-grained authorization that supports adaptable authorization switching from one policy to any other one. AasBirch achieves
constant-size storage and lightweight time cost for system initialization, file encryption and file searching. We conduct extensive
experiments based on Enron dataset in real cloud environment. Compared to state-of-the-art MC-SSE with fine-grained authorization,
AasBirch achieves 30∼200× smaller public parameter and secret key size, with the assumed least frequent keyword in a query
(s-term) as 21. Moreover, it runs 10∼20× faster for file encryption and >20× faster for file searching. In addition, AasBirch outperforms
80,000× (resp. 7,850×) faster with s-term=1 (resp. =21), as compared to classic dynamic ABKS system.

Index Terms—Cloud Storage, Searchable Encryption, Keyword Search, Boolean Query, Access Control.

✦

1 INTRODUCTION

CURRENTLY, an increasing number of resource-
restrained users have moved private files to the cloud.

The adoption of cloud-based corporate data storage has
increased from 30% in 2015 to 50% in 2021, according to
a recent report released in Statista [1]. To effectively retrieve
multi-client shared files in cloud, cloud search services have
been widely adopted in practice (such as Google, Ama-
zon). Consequently, configuring flexible search permissions
on whether a client satisfies search authorization policy is
naturally raised. In particular, the changes of search permis-
sions may cause the authorization policies to be updated
accordingly. Due to security and privacy concerns, files
are usually first encrypted before being outsourced to the
cloud [2]. Fig. 1 illustrates a conceptual example of secure
multi-client cloud search services, where data owners can
customize search authorization policy over different data
users. Generally, there are two design goals for secure multi-
client cloud search services [3]:

1) Non-interactive, flexible and fine-grained authorization.
Data owners can non-interactively configure and up-
date flexible fine-grained authorizations, for whether a
client has files retrieval and access permissions.

• Kai Zhang, Xiwen Wang and Mi Wen are with College of Computer
Science and Technology, Shanghai University of Electric Power, Shanghai,
China.

• Jianting Ning is with the Fujian Provincial Key Laboratory of Network
Security and Cryptology, College of Computer and Cyber Security, Fujian
Normal University, Fuzhou, China.

• Rongxing Lu is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada.

Manuscript received April 19, 2005; revised August 26, 2015.

Fig. 1. Secure Multi-Client Cloud Search Services

2) Effective, efficient and expressive file retrieval. Data users
can process expressive keyword search over data own-
ers’ encrypted files and efficiently receive correspond-
ing searching results from the cloud.

Nevertheless, simple data encryption may introduce
challenges of securely sharing and searching over encrypted
data in cloud. To address the challenges, the concept of
searchable encryption (SE) [4] was introduced and rapidly
developed in the public-key setting [5], particularly for
achieving fine-grained access control [6] towards a set of
clients. To date, there are two main approaches proposed
for constructing multi-client SE schemes with search au-
thorization: attribute-based keyword search (ABKS) and multi-
client searchable symmetric encryption (MC-SSE). In general,
ABKS systems [7], [8], [9], [10] provide fine-grained search
authorization in a variety of practical applications, but
rarely support conjunctive even boolean queries for scalable
storage. On the other hand, MC-SSE systems [11], [12],
[13], [14], [15], enable multi-client boolean queries over

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

encrypted data with sub-linear complexity, while have not
formally considered dynamic updating for search autho-
rization. Technically, ABKS combines public-key encryption
with keyword search (PEKS) and attribute-based encryption
(ABE). Therefore, ABKS mainly focuses on access control for
keyword search while MC-SSE primarily studies on data
sharing in multi-client setting.

Attribute-Based Keyword Search. An effective ABKS sys-
tem [7] can be seen as a non-trivial framework that combines
attribute-based encryption (ABE) [16] and somewhat key
delegating or search token extraction techniques, such as
proxy re-encryption. Based on inherent characters of fine-
grained access control over encrypted data provided by
ABE, a number of ABKS works realize owner-enforced
authorization towards multiple clients with enhanced func-
tionalities in various applications [7], [8], [9], [10], [17], [18],
[19], such as data verifiable, auditable in E-health or cloud
storage services. In particular, a dynamic ABKS system
was recently proposed to capture dynamic authorization
updating, however, it only supports single keyword search
over encrypted data [17].

In fact, most of existing ABKS schemes only support
single keyword search (or less support conjunctive keyword
search), where the searching cost increases in linear with
the number of stored files. Especially, the cost may be even
more expensive for processing boolean queries in highly-
scalable cloud storage services. Therefore, efficiently realiz-
ing expressive query models for multi-client SE is desirable.

Multi-client SSE. To enable efficient conjunctive/boolean
queries over encrypted data, Cash et al. [20] presented a
searchable symmetric encryption (SSE) scheme with sub-
linear searching cost, which is followed by [21], [22]. Never-
theless, the schemes in [20], [21], [22] only work in the sym-
metric setting that outsourced data can only be written and
read by a data owner. Later, [23] extended SSE into a multi-
client situation, but has not realized search authorization
for multiple clients. To achieve fine-grained search autho-
rization, Sun et al. [11] presented a non-interactive MC-SSE
system that employs an ABE module in a black-box manner.
Very recently, Zhang et al. [15] have attempted an MC-
SSE scheme with owner-enforced attribute-based authoriza-
tion based on [20], which is partially regarded as a semi-
black-box implementation of ABE for search authorization.
Unfortunately, the attribute universe that describes clients
is statically fixed in system initialization. A new dynamic
MC-SSE scheme was proposed in [14], however, it cannot
support non-interactive and fine-grained authorizations.

To sum up, state-of-the-art MC-SSEs with fine-grained
authorization are generally modular frameworks that com-
bines SSE and ABE, which loses high efficiency for system
initialization, file encryption and file searching. Besides,
these solutions have not formally considered authorization
dynamic updating, that is, the systems need to be costly
reset once the data owner changes authorization policies.
Such consumption of resource led by repetitive encryption
also indicated the importance of policy switching.

▷ Motivation. According to claimed design goals, the lim-
itations in all known non-interactive MC-SSE schemes for
secure cloud search services are concluded as:

i) no support for flexible, fine-grained authorization switching;
ii) (semi-) black-box implementations for search authorization;
iii) small attribute universe for static descriptions of clients.

Hence, this work is motivated to introduce an effective
and efficient non-interactive boolean MC-SSE scheme with
fine-grained authorization configuration and updating.

1.1 Our Results
In this paper, we propose a dynamic boolean file retrieval
system for secure cloud search services that supports
adaptable fine-grained authorization switching, termed Aas-
Birch. In AasBirch, data users are allowed to search over data
owner’s encrypted files in cloud, under a non-interactive
owner-enforced search authorization. In addition, AasBirch
supports authorization dynamic updating for data owners,
in which authorization configuration and switching are
directly achieved rather than (semi-)black-box implementa-
tions of strong cryptographic primitives like ABE.

Besides enabling multi-client boolean keyword searching for
scalable cloud search services with sub-linear searching cost, the
main features of AasBirch are as follows:

1) Direct, fast implementation for search authoriza-
tion. We give a direct approach for realizing fine-
grained “AND”-gate authorization in MC-SSE, rather
than (semi-)black-box implementations of ABE as ex-
isting works [11], [13], [15]. For any attribute of a
client’s attribute set (atti ∈ Σ) and any attribute in
an authorization (att′i ∈ Λ), we consider {(xi, yi)}
and {(x′i, y′i)} as two sets of points of a Lagrange
interpolation polynomial and compute a product of
coefficients ∆ and ∆′. Hence, only data users with the
same attributes that required in Λ can recover master
secret key α from its secret key (∗, gαr,∆α), where α
have been shared for each atti and att′i. To prevent data
users with the same attributes set (as a data owner)
from forging an authorization updating request, we
attach the data owner’s transformation key tk with a
proof π generated by a message authentication code
scheme.

2) Fine-grained authorization with dynamic updating.
Inspired by [24], [25], we introduce a new adaptable
authorization switching module for AasBirch: TKGen
and AuzAdp algorithms. This module allows a data
owner to switch authorization policy from one “Λ =
att1∧att2∧· · · ” to any other “Λ′ = att′1∧att′2∧· · · ”, for
non-interactively updating search authorizations over
different data users, while not generating correspond-
ing transformation keys for each user as [9], [17]. By
generating a transformation key tk of Λ ⇒ Λ′ that
includes two respective set of points ({xi, yi}, {x′i, y′i})
of Ψk(x),Ψ

′
k(x) and partial conversion tuples, a data

owner can thus allow the cloud to transform encrypted
files under from Λ switching to any Λ′. In particular,
the cloud obtains no knowledge of authorizations Λ,Λ′

and file plaintext information.
3) Efficient system initialization and file encryption.

To reduce system initialization cost, we consider the
description of clients as a dynamic large-universe U =
{0, 1}∗, which allows Setup algorithm to avoid prepar-
ing 2n variables for each atti of a small-universe de-
scription U = {0, 1}n as [15]. Moreover, we introduce a

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1
Non-Interactive Multi-client Searchable Encryption with fine-grained authorization

Work MC BQ
Authorization

ABE Universe
Time Cost Storage Cost

NI FG SW Setup Encryption Searching PP sk EDB

[7], [9] " % " " % - O(nk · |Σ| · |DB|) O(nk · |Σ|) - - O(nk · |Σ| · |DB|)
[17] " % " " " □ O(1) O(nk · |Σ| · |DB|) O(nk · |Σ|) O(1) O(n) O(nk · |Σ| · |DB|)

[14] " " % % " NA NA O(1) O(|DB|) O(q · cw1) O(1) O(n) O(|DB|)
[11], [13] " " " " % O(n) O(|Σ| · |DB|) O(q · cw1) O(1) O(1) O(|Σ| · |DB|)

[15] " " " " % ■ O(n) O(|Σ| · |DB|) O(q · cw1) O(n) O(n) O(|Σ| · |DB|)

AasBirch " " " " " □ O(1) O(|DB|) O(q · cw1) O(1) O(1) O(|DB|)
1 Let “MC” denote “Multi-Client”, “BQ” denote “Boolean Query”, “NI” denote “Non-Interactive”, “FG” denote “Fine-Grained”, “SW” denote “Policy Switching”,
“ABE” denote “ABE Usage”, “Universe” denote “Attribute Universe” and “PP, sk, EDB” denote public parameter, secret key and encrypted files index.
2 Let “ , , , NA” denote a “Black-Box, Semi-Black-Box, No Use, Not Applicable” implementation of ABE for authorization; and “■, , □, NA” denote a
“Static, Static/Dynamic, Dynamic, Not Applicable” attribute-based universe description for clients.
3 Let “n” denote the base of considered attribute universe, “nk” denote the number of keywords associated with a file, “q” denote the number of keywords in a
query, “cw1” denote the number of files related to s-term, “|DB|” denote the number of files in DB and “|Σ|” denote the number of attributes of an encrypted file.

dummy authorization Λ0 = att0∧att′0 for a data owner
first-time encrypting files that outsourced to cloud, later
allow it to generate a transformation key for cloud
transforming encrypted files under Λ0 ⇒ Λ without
confidential information leakage. As a result, AasBirch
achieves constant-size public parameter, secret key and
encrypted files, which are independent of an actual
owner-enforced authorization Λ.

The high-level construction idea and formal description of
our AasBirch system are concluded in Section 4. In addition,
we give a formal security analysis of AasBirch under the
threats from adversarial server and clients. Table. 1 shows a
general feature and efficiency comparison between AasBirch
and state-of-the-art multi-client SE solutions. As shown in
Table. 1, AasBirch achieves more desirable functionalities, in
particular, non-interactive fine-grained authorization with adapt-
able switching. Besides, the authorization is effectively, effi-
ciently and directly realized over a dynamic large-universe
description of clients, while does not rely on (semi-)black-
box implementations of ABE to achieve fine-grained search
authorizations as all existing solutions. Furthermore, the
storage and time cost of AasBirch are highly efficient.

To illustrate practical performance, we implement state-
of-the-art non-interactive fine-grained MC-SSE [15], dy-
namic ABKS [17] and AasBirch based on Enron dataset [26]
in real HUAWEI Cloud environment [27]. For consumed
time cost on the sides of client, client-to-cloud communica-
tion and cloud, AasBirch outperforms [15], [17] for system
initialization, file encryption and searching. In particular,
AasBirch achieves 0.49 KB constant-size PP and 0.36 KB
constant-size sk, which is respectively roughly 30∼250 times
smaller and 30∼200 times smaller than state-of-the-art MC-
SSE with fine-grained authorization [15]. In addition, the
authorization switching cost of a data owner is only 0.2%
of file encryption under a dummy authorization, where
#attributes in the authorization switches from 90 to 100.
Moreover, AasBirch runs 20× faster than existing solutions
for file encryption and more than 10,000× faster than tradi-
tional DABKS [17] for file searching.
Organization. Section 2 reviews preliminaries and Section 3

defines problem formulation. We present AasBirch system
and analyze its security in Section 4 and Section 5. The
experiment and performance analysis are given in Section 6,
and Section 7 shows some discussions and comparisons
with related work. Section 8 concludes this work.

2 BACKGROUND KNOWLEDGE

The notations through this work are listed in Table 2.

TABLE 2
Notations

Notation Meaning
att An attribute.
att0 A dummy attribute.
Σ An attribute set Σ = (att1, att2, · · ·).
U A universe description for clients.
Λ An authorization policy.
Λ0 A dummy authorization policy.
ind The indice of a document.
w A keyword.
W A set of keywords W = (w1, w2, · · · , wn).
Doc A document Doc is labeled with (ind,Wind).
DB An outsourced database.
DB[w] The indices of documents laberled with key-

word w.
s-term The least frequent keyword in a query.
xterm Any queried keyword in a query.

Definition 1. A keyword dictionary δ manages a set of tuples
(w, c), in which w is a keyword and c is a counter.
Generally, there are two functions in δ:

• c ← Get(δ, w) : For any keyword w in δ, the function
outputs the counter of w; else directly returns 0.
• Update(δ, w, c) : For any keyword w in δ, the function

updates the counter of a keyword w to c. Otherwise, it
inserts the tuple (w, c) into δ.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 3
The workflow of AasBirch

Data Owners Cloud Data Users
(PP, skClnt) (PP, pkSer, skSer) (PP, skClnt)

Encrypt(PP,Doc, skClnt,Λ0)
EDoc−−−−−→

TKGen(PP, skClnt,Λ,Λ
′)

(tk,π)−−−−−→
AuzAdp(PP,EDoc, skSer, tk, π) ↬ EDoc

Token←−−−−− TrapGen(skClnt, Q)

Search(Token)
R−−−−−→

Retrieve(skClnt, R) ↬ DOC

Definition 2. Let Ψ(x) =
∑k

i=0 yipi(x) =
∑k

i=0 ∆ix
i be a

Lagrange interpolation polynomial of degree k passing
k + 1 distinct points {(xi, yi) = (xi,Ψ(xi))}ki=0, where

pi(x) =
∏

0≤j ̸=i≤k

x− xj
xi − xj

=

{
1, x = xi
0, x ∈ {x0, · · · , xk}\{xi}.

Definition 3. A message authentication code (MAC) is a
primitive that used to authenticate a message with gen-
erating a tag, which has the following algorithms:

• Gen(κ) → K ′: The key generation algorithm inputs a
security parameter κ and produces a random key K ′;

• Mac(K ′,m) → π: The tag generation algorithm inputs
a message m and outputs a valid tag π;

• Veri(K ′, π,m) → {0, 1}: The verification algorithm
inputs π and m, and returns 1 if π is a valid tag for
m; otherwise, it outputs 0.

For any PPT adversary A, a secure unforgeable
MAC scheme implies that the A’s winning advantage
AdvUnforgeableA,MAC (κ) of forging a tag π′ for m (passes Veri
algorithm) is negligible.

Definition 4. A pseudo-random function (PRF) F is an
efficiently computable function that simulates a random
oracle, where no probabilistic polynomial time (PPT)
algorithms can distinguish between F and a random
function F ′. For any PPT adversary A, the F is said to
be a secure PRF if A’s winning advantage AdvPRFA,F (κ) =

|Pr[AF (K,·)(1κ)] − Pr[AF ′(·)(1κ)]| ≤ negl(κ) holds,
where K $←− {0, 1}κ.

Definition 5. Consider a cyclic group G of prime order p, any
positive integer a, and g is a generator of G and h is an
element of G. For any PPT adversaryA, the Discrete Log-
arithm (DL) assumption implies that the A’s winning
advantage AdvDL

A,G(κ) = |Pr[A(g, ga)] − Pr[A(g, h)]| of
distinguishing ga from h is negligible.

Definition 6. Consider a cyclic group G of prime or-
der p, and g is a randomly chosen element from
G and a, b, r are randomly chosen from Zp. For
any PPT adversary A, the Decisional Diffie-Hellman
(DDH) assumption implies that A’s winning advantage
AdvDDH

A,G (κ) =
∣∣Pr[A(g, ga, gb, gab)]−Pr[A(g, ga, gb, gr)]

∣∣
of distinguishing (g, ga, gb, gab) from (g, ga, gb, gr) is
negligible.

3 PROBLEM FORMULATION

To address the lack of flexible fine-grained authorization
switching, we formalize system model, function definition,
design goals and security guarantee model for AasBirch.

3.1 System Model
There are three different entities in the AasBirch system:

• Authority: It is a trusted entity that initializes a sys-
tem with publishing public parameters. Moreover, it
distributes public key and private key pair for cloud
servers, and secret key for clients.

• Cloud: The cloud is a semi-honest server that honestly
runs algorithm and provides encrypted files searching
and authorization switching services for clients.

• Clients: The clients include multiple data owners and
multiple data users. A data owner stores files on the
cloud with enforcing an authorization policy, while
data users who satisfy the policy could search the files.

Function Definition. The AasBirth system includes the fol-
lowing functions (as depicted in Table 3).

• Setup(1κ,U) → (PP,MK) : Input a security parameter
κ and attribute universe U , the authority runs the setup
algorithm to generate a public parameter PP and a
master key MK.

• KeyGenSer(PP,MK) → (pkSer, skSer) : Input PP and
MK, the authority runs the server key generation al-
gorithm to generate a pair of public key and secret key
(pkSer, skSer) for the server.

• KeyGenClnt(MK,Σ) → skClnt : Input MK and an at-
tribute set Σ, the authority runs the client key genera-
tion algorithm to generate a secret key skClnt for a client.

• Encrypt(PP,Doc, skClnt,Λ0) → EDoc : Input PP, a
secret key skClnt, a document Doc and a dummy au-
thorization policy Λ0, the client runs the encryption
algorithm to generate encrypted documents EDoc.

• TKGen(PP, skClnt,Λ,Λ
′) → (tk, π) : Input PP, a se-

cret key skClnt, an authorization Λ and an updated
authorization Λ′, the client runs the transformation key
generation algorithm, and generates a transformation
key tk and a proof π.

• AuzAdp(PP,EDoc, skSer, tk, π)→ EDoc′ : Input PP, en-
crypted documents EDoc, a server secret key skSer and
a transformation key tk and a proof π, the server runs
the policy adaptable switching algorithm to generate
an updated encrypted documents EDoc′ under other
policy.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

• TrapGen(skClnt, Q) → Token : Input skClnt and a query
Q, a client runs the trapdoor generation algorithm, and
generates a search token Token.

• Search(Token)→ R : Input a search token Token from a
client, the server runs the search algorithm, and returns
the corresponding search result R.

• Retrieve(skClnt, R) → Doc : Input a client secret key
skClnt and the search result R, the client runs the file
retrieval algorithm and gets corresponding files Doc.

3.2 Design Goals
The design goals of AasBirch are formalized as follows.

• Non-interactive fine-grained authorization. Data own-
ers can non-interactively enforce fine-grained search
authorizations for multiple data users, where satisfied
users can search over the data owners’ encrypted files.

• Dynamic authorization updating. The system supports
adaptable authorization switching from one authoriza-
tion to any other one for data owners.

• Efficient, expressive searching query. For a data user’s
boolean queries, the cloud can return corresponding
results with sub-linear complexity searching cost.

• High running efficiency. The system achieves
fast algorithm-running efficiency and low entity-
communication overhead.

3.3 Security Guarantee Model
The security threats of AasBirch system comes from both
adversarial server and adversarial clients, that is:

3.3.1 Security against adversarial server
Based on the defined security model of SSE [11], [20], this
security implies that the view of the cloud can be simulated
given only the output of a leakage function L for (non-
)adaptive attacks.
Definition 7. Let Π be a AasBirch scheme that presented in

Section 4, we define the security via the following two
experiments by two efficient algorithms A and S :

RealΠA(κ): A(κ) continually chooses an encryption tu-
ple (D, skOW,Λ0) or a query tuple (Q, skUSR), where
skOW, skUSR respectively denotes the secret key of
a data owner or a data user, and Λ0 is a
dummy authorization policy. The algorithm returns
(EDB,XSet) to A via running Encrypt(PP,D, skOW,Λ0)
and TKGen(PP, skClnt,Λ,Λ

′) for a chosen encryp-
tion tuple; otherwise returns R to A via running
TrapGen(PP, skClnt, Q) and Search(Token). Finally, the
experiment outputs a bit from {0, 1}.

IdealΠA,S(κ): This experiment initializes two empty lists d
and q, with setting two counters i = 1 and j = 1.A(1κ)
continually picks an encryption tuple (D, skOW,Λ0) or a
query tuple (Q, skUSR). For a chosen encryption tuple,A
records it as d[i] with increasing i, and the experiment
returns (EDB,XSet)← S(L(d,q)) toA. Otherwise, the
experiment records it as q[j] with increasing j, and
outputs a transcript to A by S(L(d,q)). Finally, the
experiment outputs a bit from {0, 1}.

▷ Formalized Leakage function L. In the two algorithms
A and S , the leakage function L(d,q) is formally de-
fined as L(d,q) = {op, N, s̄,SP,RP,SRP, dRP, IP, xt},

whose outputs are as follows (the leakage information
in RP,SRP and SRP is overstated):

• op is an array that records an “encrypt” or a “search”
type for each operation, whose length is |op| = |d|+|q|.
In particular, the knowledge of each operation op[i] is
directly known (leaked) to the cloud.

• N is an array that records the number of keywords XSet
in each encrypted file EDB.

• s̄ denotes the equality pattern of a set of s-terms. For
example, we set s̄ = (1, 2, 1, 3, 2) for s = (a, b, a, c, b).

• RP[i, α] = DB[s[i]] ∩ DB[x[i, α]] records the revealed
indices from the intersection of s-term and any xterm
in a query. Let RP[i, α, d] be the ind of RP[i, α] in d[d].

• SRP[i] = DB[s[i]] denotes the matching results of s-
terms in the i-th query.

• IP records some partial results between the inter-
section of two s-terms (s[i1]] and s[i2]]). That is,
IP[i1, i2, α, β] = DB[s[i1]] ∩ DB[s[i2]] if s[i1] ̸=
s[i2],x[i1, α] = x[i2, β]. Otherwise, it is an empty set.

• dRP[i][j] == 1 indicates that the s-term s[j] is used to
retrieve EDB[l] generated by d[i]; otherwise it is 0.

• xt[i] = |x[i, ·]| is the number of xterms in the i-th query.

Assume an efficient algorithm S exits, we say that Π is L-
semantically secure against an adversarial adversary if

Pr[RealΠA(κ) = 1]− Pr[IdealΠA,S(κ) = 1] ≤ negl(κ).

3.3.2 Security against adversarial clients
The security implies that the colluded clients cannot forge
search tokens of data users and switching trapdoor proofs
of data owners.

Definition 8. Let Π be a AasBirch scheme that presented
in Section 4, we define the security via the following
game CollUFExpΠA(κ) that played by a challenger and an
adversary A:

Initialization. The challenger runs the setup algorithm and
returns public parameters PP← Setup(1κ,U) to A.

Key Extraction. A adaptively issues any secret key query
under an attribute set Σ, and the challenger runs the
key generation algorithm and returns corresponding
secret keys skClnt ← KeyGenClnt(MK,Σ) to A.

Challenge. A chooses a challenge attribute set Σ∗ that not
queried before and sends it to the challenger. Finally,
the challenger returns a query keyword W to A.

Output. For a challenge attribute set Σ∗, A outputs a
search token related with W and a transformation key. It
indicates that A wins the game if its output is valid.

For any PPT adversary A, we say that Π is secure against
adversarial colluded clients if

Pr[A wins in CollUFExpΠA(κ)] ≤ negl(κ).

4 AASBIRCH: SYSTEM DESCRIPTION

In this section, we start from give a high-level description
and technical overview of our AasBirch. In the following,
we propose an effective conjunctive AasBirch system that
supports “AND”-gate authorization. An enhanced boolean
AasBirch is discussed in Section 4.5.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

4.1 High-level Description
In our AasBirch, the authority initializes the system via run-
ning Setup(1κ,U) → (PP,MK), and produces a public key
and private key pair to the cloud and secret keys to clients
via running KeyGenSer(PP,MK) and KeyGenClnt(Σ,MK).
A data owner encrypts files with a dummy policy Λ0

via running Encrypt(PP,Doc, skClnt,Λ0) and later gener-
ates an actual authorization policy (or switch an autho-
rization policy) via running TKGen(PP, skClnt,Λ,Λ

′) →
(tk, π). The cloud transforms encrypted files into that en-
crypted under a newly updated authorization, via running
AuzAdp(PP,EDoc, skSer, tk, π). To search the data owner’s
encrypted documents in the cloud, a data user issues a file
query request Q via running TrapGen(skClnt, Q) → Token
and sends Token to the cloud. The cloud search files via
running Search(Token) → R according to Token. Finally,
the data user retrieves the encrypted files with {ind||Kind}
decrypted from R.

4.2 Technique Overview
1) Achieving direct implementation of fine-grained search

authorization. We consider each attribute atti of a client
as a point (xi, yi) = (gγH2(atti), gγH3(atti)) of a Lagrange
interpolation polynomial Ψk(x) (c.f. Definition 2) and
compute a product of coefficients ∆ =

∏k−1
i=0 ∆i; and

thus produce a secret key skClnt = (γ, gαr,∆α), where
α, γ is the master secret key and r is a randomness.
For any attribute att′i that required in an “AND”-gate
authorization Λ, we re-compute a product of coefficients
∆′

i =
∏k−1

i=0 ∆′
i of Ψk(x). Hence, the client with the same

attributes as required in Λ can share a same product
of coefficients (∆ = ∆′), and finally recover the master
secret key α.

2) Enabling multi-client conjunctive/boolean queries un-
der owner-enforced authorization. We revisit Cash et
al.’s SSE [20] and introduce an owner-enforced au-
thorization Λ = (att1 ∧ att2 ∧ · · ·) into file encryp-
tion algorithm, where a new key generation algorithm
KeyGenClnt is introduced for producing secret keys
skClnt = (γ, gαr,∆α) for each client. For a data user’s
conjunctive query, its search token Token relates to
attributes Σ = (att1, att2, · · ·) and issued keywords
Q = (w1∧w2∧· · ·wq). Thus, we have every Trap[c][j] =
∆αγH(wj)/(F (Kz,c||w1)) in Token where w1 is assumed
as the s-term, thus the searching cost is still a sub-
linear complexity O(cw1

) as [13], [15], [20]. Extending
conjunctive AasBirch to deal with boolean queries is
straightforwardly obtained and formally discussed in
Section 7.

3) Supporting search authorization with adaptable
switching. To enable adaptable authorization switching
from Λ to any other Λ′, we introduce two new algo-
rithms inspired by [24], [25]: transformation key gener-
ation TKGen and authorization adaptable AuzAdp. By
generating a transformation key tk that includes two
sets of points {(xi, yi)}, {(x′i, y′i)} , a data owner dele-
gates cloud to compute two products of coefficients ∆
and ∆′. Thus, the cloud can transform encrypted files
from (ind||Kind · gγ∆α, e1, e2, g

βtgFp(Ky,H4(Λ)||H5(v), e4)
to (ind||Kind · gγ∆′α, e1, e2, g

βtgFp(Ky,H4(Λ
′)||H5(v), e4),

while learns no privacy information about Λ,Λ′ and file
plaintext. In addition, we let data owners encrypt files
under a dummy authorization policy Λ0 = att0 ∧ att′0,
and later switch it to an actual authorization Λ0 ⇒ Λ
for further reducing file encryption cost. Besides, we
introduce a message authentication code MAC in case
a data user may forge a transformation key tk who has
the same attributes set as a data owner. Concretely, we
generate a tag π = MAC.Mac(K ′, tk) as a proof to be
verified by running MAC.Veri(K ′, tk, π).

4.3 AasBirch system with conjunctive queries

Assume the dynamic attribute universe that describe clients
is U = {0, 1}∗. Let G,GT be groups of a prime order p with
a bilinear map e : G×G→ GT , where g is a generator of G.
Let F be a PRF with range in {0, 1}∗, Fp be a PRF with range
in Zp, H1, H2, H3 : {0, 1}∗ → Zp, H4 : {0, 1}∗ → {0, 1}∗
and H5 : G → {0, 1}∗ are collision-resistant hash func-
tions. Define a Lagrange interpolation polynomial function
Ψk(x) = ∆0 + ∆1x + · · · + ∆k−1x

k−1 =
∑k−1

i=0 (∆ix
i)

and a secure message authentication code scheme MAC =
(Gen,Mac,Veri) that instantiated with an AES algorithm.
Moreover, we employ a symmetric key encryption algo-
rithm (e.g., AES) with a key Kind to encrypt a document
{(ind,Wind)}, and use a keyword dictionary δ defined in
Definition 1 to manage a set of (w, c) by c ← Get(δ, w) and
Update(δ, w, c). Concretely, AasBirch is formally described
in Fig. 2.

4.4 Correctness Guarantee

4.4.1 The correctness of authorization switching

1) Switching a dummy policy Λ0 to an actual policy
Λ: Given an encryption tuple EDB[lc] = (e0, e1, e2, e3, e4)
encrypted under Λ0 and a transformation key

tk = (

tk0︷ ︸︸ ︷
{(⊥,⊥)},

tk1︷ ︸︸ ︷
{(x′i, y′i)}k

′−1
i=0 ,

tk2︷ ︸︸ ︷
gβrgη,

tk3︷ ︸︸ ︷
gβrgη

′
,

tk4︷︸︸︷
gr ,

st︷︸︸︷
0),

the cloud first verifies whether

tk2/tk
β
4

?= e3/e
β
4 ,

and then uses tk0 and tk1 to compute a set of b′i and
B′ =

∏k′−1
i=0 b′i for Λ′ according to Lagrange interpolation

polynomial as follows:

Ψ′(x) =
k′−1∑
i=0

(y′i ·
∏

0≤j ̸=i≤k′−1

x− x′j
x′i − x′j

) =
k′−1∑
i=0

(b′ix
i),

finally, it uses tk3 and tk4 to update EDB[lc] and xtag′ as
follows:

e′0 = e0/e
β
4 ·B′α

= ind||Kind · gγgβr/grβ ·B′α

= ind||Kind · gγB′α

e′3 = eβ4 · tk3/tk
β
4 = grβ · gβrgη

′
/grβ = gβrgη

′

xtag′ = e(B′α, e2) = e(B′α, gγH(w)·xind)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

• Setup(1κ,U) → (PP,MK) : The authority inputs a secure parameter κ and an attribute universe U = {0, 1}∗. It
randomly selects three keys Kx,Kz,Ky ← {0, 1}n for Fp, a key Kl ← {0, 1}n for F and γ, α← Zp. Finally, it outputs
a public parameter PP = {e, g, gα, H,H1, H2, H3, H4, H5, F, Fp} and a master key MK = {Kx,Kz,Kl,Ky, γ, α}.

• KeyGenSer(PP,MK)→ (pkSer, skSer) : The authority inputs (PP,MK), and randomly selects β ← Zp. Finally, it outputs
a secret key skSer = (α, β) and a public key pkSer = gβ for the cloud server.

• KeyGenClnt(Σ,MK) → skClnt : The authority inputs MK and an attribute set Σ ⊆ U (a non-empty subset of U) of a
client. For any attribute atti ∈ Σ, it computes xi = gγH2(atti), yi = gγH3(atti), and computes A =

∏k−1
i=0 ai according

to a Lagrange interpolation polynomial Ψk(x) =
∑k−1

i=0 aix
i, where k is the number of client’s attributes. It randomly

selects r ← Zp and compute v = gαr , and runs MAC.Gen(κ) to produce a key K ′. Finally, it outputs a secret key
skClnt = {Kx,Kz,Kl,Ky, γ, v, A

α,K ′} for a client.
• Encrypt(PP,Doc, skClnt,Λ0) → EDoc : A client inputs PP, a secret key skClnt = {Kx,Kz,Kl,Ky, γ, v, A

α,K ′}, a
document Doc = (ind,Wind) and a dummy authorization policy Λ0 = {att0 ∧ att′0}, encrypts the original document
by using a symmetric key algorithm (e.g., AES) with a secret key Kind, and does the following:

1) Compute an internal counter c ← Get(δ, w), c ← c + 1 and lc ← F (Kl, c||w), z ← Fp(Kz, c||w), η ←
Fp(Ky, H4(Λ0)||H5(v)), xind ← Fp(Kx, ind), and run Update(δ, w, c) to update the counter of each keyword w
to c.

2) Randomly select t ← Zp, and compute encrypted tuples e0 ← ind||Kind · gγgβt, e1 ← gz·xind, e2 ← gγH1(w)·xind,
e3 ← gβt · gη , e4 ← gt. Set each item in EDB[lc] = (e0, e1, e2, e3, e4), and append xtag← e(gη, gγH1(w)·xind) to XSet.

3) Compute ld = H4(g
η) and set EDoc[ld] = (EDB,XSet).

Here, we remark that the xtag encrypted under a dummy policy Λ0 is later transformed to xtag′ under a new actual
policy Λ′ in AuzAdp(·).

• TKGen(PP, skClnt,Λ,Λ
′) → (tk, π) : A data owner inputs PP, secret key skClnt, an authorization Λ and an updated

authorization policy Λ′(̸= Λ), and does the following:
1) Compute each (xi, yi) = (gγH2(atti), gγH3(atti)) for any attribute atti ∈ Λ, and compute each (x′i, y

′
i) =

(gγH2(att
′
i), gγH3(att

′
i)) for any attribute att′i ∈ Λ′. And compute η ← Fp(Ky, H4(Λ)||H5(v)) and η′ ←

Fp(Ky, H4(Λ
′)||H5(v)).

2) Randomly select r ← Zp, and set a transformation key tk = ({(xi, yi)}k−1
i=0 , {(x′i, y′i)}

k′−1
i=0 , g

βrgη, gβrgη
′
, gr, st),

where st = 0 if Λ = Λ0 (i.e., the old policy Λ is a dummy policy Λ0), else set st = 1. And it generates a proof
π = MAC.Mac(K ′, tk) for the transformation key tk and sends (tk, π) to cloud.

• AuzAdp(PP, skSer, tk, π)→ EDoc′ : The cloud inputs PP, skSer and a transformation key tk and a proof π. By verifying
the validity of (tk, π) by MAC.Veri(K ′, tk, π), it does the following

1) Compute B =
∏k−1

i=0 bi according to Ψk(x) =
∑k−1

i=0 bix
i based on {(xi, yi)}k−1

i=1 , and compute B′ =
∏k′−1

i=0 b′i
according to Ψk′(x) =

∑k′−1
i=0 b′ix

i based on {(x′i, y′i)}k
′−1

i=1 . And compute ld = H4(g
η) if st = 0, else ld = H4(B

α)
and l′d = H4(B

′α) according to B and B′, and later locate EDoc[ld] = (EDB,XSet).
2) For each tuple (e0, e1, e2, e3, e4) ∈ EDB, if gη not equals to e3/e

β
4 , it terminates. Otherwise, it does the following:

a) and if st = 0, convert e0 = ind||Kind · gγgβt to e0 = ind||Kind · gγB′α.
b) and if st = 1, convert e0 = ind||Kind · gγBα to e0 = ind||Kind · gγB′α.

3) For each tuple xtag ∈ XSet, convert xtag to xtag′ = e(B′α, gγH1(w)·xind) (where gγH1(w)·xind comes from e2).
4) Replace a modified tuple (e′0, e1, e2, e

′
3, e4) and xtag′ to EDoc[l′d], where e′3 = gβt · gη′

.

• TrapGen(skClnt, Q) → Token : For a conjunctive query Q = (w1 ∧ w2 ∧ · · · ∧ wq) where w1 is the least frequent term
(s-term) in Q, a client inputs skClnt and computes ld ← H4(A

α), lc ← F (Kl, c||w1), zc ← F (Kz, c||w1), Trap[c][j] =
AαγH(wj)/zc , for j ∈ [q], c = 1, 2, · · · . Eventually, it sends Token[c] = (ld, lc,Trap) where Trap[c] = {Trap[c][j]}j∈[q] to
the cloud for c = 1, 2, · · · .

• Search(Token)→ RWith a search token Token from a client, the cloud initializes an empty setR as a searching result for
c = 1, 2, · · · , and retrieves (e0, e1, e2, e3, e4) ← EDB[lc], where EDB ← EDoc[ld]. By checking if e(AαγH(wj)/zc , e1) ∈
XSet for all j ∈ [q] (where AαγH(wj)/zc comes from Trap[c][j]), then it adds e0 to the set R for all j ∈ [q].

• Retrieve(R)→ Doc A data user decrypts each encrypted ind from e0 = ind||Kind ·gγAα from the received R, and thus
gets the encrypted files with inds. Finally, it decrypts the encrypted files with Kind.

Fig. 2. Formal description of the AasBirch system that deals with conjunctive queries

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

2) Switching an old policy Λ to a new policy Λ′: Given
an encryption tuple EDB[lc] = (e0, e1, e2, e3, e4) encrypted
under Λ, a transformation key

tk = (

tk0︷ ︸︸ ︷
{(xi, yi)},

tk1︷ ︸︸ ︷
{(x′i, y′i)}k

′−1
i=0 ,

tk2︷ ︸︸ ︷
gβrgη,

tk3︷ ︸︸ ︷
gβrgη

′
,

tk4︷︸︸︷
gr ,

st︷︸︸︷
1),

and a new policy Λ′, the cloud first verifies whether

tk2/tk
β
4

?= e3/e
β
4 ,

and then uses tk0 and tk1 to compute a set of bi, b′i and
B =

∏k′−1
i=0 bi, B

′ =
∏k′−1

i=0 b′i for Λ,Λ′ according to La-
grange interpolation polynomial, finally, it uses tk3 and tk4
to update EDB[lc] and xtag′ as follows:

e′0 = e0/B
α · (B′)α

= ind||Kind · gγBα/Bα ·B′α

= ind||Kind · gγB′α

e′3 = eβ4 · tk3/tk
β
4 = gtβ · gβrgη

′
/grβ = gβtgη

′

xtag′ = (B′α, e2) = e(B′α, gγH(w)·xind).

4.4.2 The correctness of file searching
Given a search token

Token[c] = (

ld︷ ︸︸ ︷
H4(A

α),

lc︷ ︸︸ ︷
F (Kl, c||w),

Trap︷ ︸︸ ︷
{AαγH(wj)/zc}qj=1)

and an encrypted document

EDoc[ld] := (

EDB︷ ︸︸ ︷
{e0, e1, e2, e3, e4},

XSet︷ ︸︸ ︷
{xtag = e(Aα, e2)}),

the cloud first uses ld to locate EDoc[ld] and get
(EDB,XSet), and also uses lc to locate the encryption tuple
(e0, e1, e2, e3, e4) from EDB[lc], and finally uses Token[c] to
search over EDoc[ld] as follows:

e(Trap[c][[j], e1) = e(AαγH(wj)/zc , gzc·xind)

= e(AαγH(wj), gxind)

= e(Aα, gγH(wj)·xind) = xtag.

4.5 Discussion and Extension

4.5.1 Fine-grained Authorization towards Multiple Clients
In AasBirth, every document is associated with a set of key-
words, and the data owner and client are described by a set
of attributes. We note that the fine-grained attribute-based
authorization configuration and switching are designed for
limiting the access and search permission of multiple clients.
Nevertheless, the fine-gained authorization switching is not
applicable for the situation of document Doc = (ind,Wind).
Since the authorization switching for the document implies
the authorization switching for the underlying encrypted
keywords (i.e., ({EDB[l]}, {xtag})) in the document, this
may unfortunately leak the connection privacy between
({EDB[l]}, {xtag}) and (ind,Wind) to the cloud.

Technically speaking, a document Doc = (ind,Wind)

is encrypted as EDoc[ld] = ({EDB[li]}|Wind|
i=1 , {xtagi}

|Wind|
i=1),

where {EDB[li]} and {xtagi} are separately linked with a
document. In this way, a data owner can switch all encryp-
tion tuples (i.e., EDoc[ld] = ({EDB[li]}|Wind|

i=1 , {xtagi}
|Wind|
i=1))

under from old authorization policy Λ to new Λ′ by just
inputting several keywords (i.e., a subset of Wind) and a
policy switching pair (Λ,Λ′). Hence, the cloud obtains the
knowledge that which EDB[l] or xtag associates with a
document.

4.5.2 Enhanced AasBirch system with boolean queries
Similar to [20], we show how to extend conjunctive queries
“w1∧w2∧· · ·∧wq” to boolean queries “w1∧ψ(w2, · · · , wq)”
for a set of keywords (w1, w2, · · · , wq). A data user com-
putes lc and Trap[c] and sends them with a boolean expres-
sion ψ̄ to the cloud, where ψ̄ is a copy of ψ except that
the keywords are replaced by (v2, · · · , vq). Later, the cloud
uses lc to retrieve tuples (e0, e1, e2, e3, e4) using s-term
keyword w1, where the difference with conjunctive queries
is the way to determine which tuples match ψ̄. For each
(e0, e1, e2, e3, e4)← EDB[lc], the cloud sets (v2, · · · , vq) as

vj =

{
1 if e(AαγH(wj)/zc , e1) ∈ XSet
0 otherwise

where j = 2, · · · , q. If e(AαγH(wj)/zc , e1) ∈ XSet and ψ̄
holds, this implies that the tuple matches the query, then
the cloud appends e0 to the result set R. We remark that
the searching cost for processing such boolean query is
O(cw1) where w1 is the s-term in a query. The leakage
profile description and analysis is consistent with that of
conjunctive AasBirch, except for ψ̄ is obtained by the cloud.

5 AASBIRCH: SECURITY ANALYSIS

Based on the introduced security model, we give a formal
security analysis of (non-)adaptive adversarial cloud server
and colluded adversarial clients for the AasBirch system.

5.1 Security Analysis
We present the following three theorems to sketch a security
analysis for the AasBirch system.
Theorem 1. Assume the employed PRFs and hash functions

and MAC in AasBirch are secure, and DL and DDH
assumptions hold in G and GT , hence our scheme is L-
semantically secure against non-adaptive attacks under
the introduced security model in Section 3.3.

Proof 1. The non-adaptive attack indicates that an ad-
versary submits two completed lists d and q as
inputs of a leakage function L, thus we construct
a simulator IdealΠA,S(κ) (formally presented in Algo-
rithm. 1) that has the same distribution as the real
game RealΠA(κ). Formally speaking, given the leakage
function L(d,q) = (op, N, s̄,RP,SRP, IP, dRP, xt), the
simulator firstly computes a restricted equality pattern x̄
to describe which xterms are “known” to be equal by the
cloud. For two queries

q[t1] = ((s[t1],x[t1, ·]), id[t1])

and
q[t2] = ((s[t2],x[t2, ·]), id[t2]),

there exists a ind such that ind ∈ DB[s[t1]] ∪ DB[s[t2]].
The adversary is able to know the xterms x[t1, α]
and x[t2, β] that are equal from “e(AαγH(wj)/zc , e1)”.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Algorithm 1 Security Proof: Simulator Description

function Initialize(L(d,q))
γ

$←− Zp

for each h ∈ s′ do
ch=0

end for
for each w ∈ x′, ind ∈ RP ∪ IP do

H2[w, ind] = y
$←− Zp

H3[w, ind] = e(g, g)H2[w,ind]

end for
for each w ∈ x′, ind ∈ RP ∪ IP,Λind ∈ Λ do

if Λind =
∧

atti∈I
atti then

if H7[atti] exists then
xi, yi ← H7[atti]

else xi ← G, yi ← G, H7[atti] = xi, yi
end if
H5[w, ind,Λind] = A calculated by Lagrange

end if
end for
d = q = a = 1
for h = 1 to |op| do

switch (op[h]):
case encrypt:

t[h]← Encrypt(L(d,q)), d++; break
case search:

t[h] = TranGen(L(d,q)), q ++; break
end for
return t

end function
function Encrypt(L(d,q))

h = 0, Dup← {}
for s′[q′] ∈ {s′[q] · · · s′[|s|]}, s′[q′] /∈ Dup and

dRP[d][q′] == 1 do
cs′[q′] ++

l
$←− {0, 1}∗, l[s[q′], cs′[q′]] = l, e0 = gγH5[Λ[d]])

y′
$←− Zp, H1[s

′[q′], cs′[q′]] = y′

e1 ← g
H1[s′[q′],cs′[q′]]
2 , e2

$←− G, e3
$←− G, e4

$←− G
EDB[l] = (e0, e1, e2, e3, e4)
XSet← XSetSetup(L(d,q))
EDoc[H8[Λ[d]]]← EDoc[H8[Λ[d]]] ∪ (EDB,XSet)
Dup← Dup ∪ s′[q′], h++

end for
for h to N [d] do

l
$←− {0, 1}∗, y $←− G, e0 = yH5[Λ[d]])

e1
$←− G, e2

$←− G, e3
$←− G, e4

$←− G
EDB[l] = (e0, e1, e2, e3, e4)
XSet← XSetSetup(L(d,q))
EDoc[H8[Λ[d]]]← EDoc[H8[Λ[d]]] ∪ (EDB,XSet)

end for
return EDoc

end function
function XSetSetup(L(d,q))

XSet← {}, h = 0
for w = x′[t ≥ q, α] and RP[t, α, d] ̸= ∅ do

ind← RP[t, α, d], xtag← H3[w, ind]
XSet← XSet ∪ xtag, h++

end for
for j to N [d] do

xtag
$←− GT , XSet← XSet ∪ xtag

end for
return XSet

end function
function TKGen(L(d,q))

for atti ∈ Λ do
if H7[atti] exists then xi, yi ← H7[atti]
else xi ← G, yi ← G, H7[atti] = xi, yi
end if

end for
for att′i ∈ Λ′ do

if H7[atti] exists then x′i, y
′
i ← H7[att

′
i]

else x′i ← G, y′i ← G, H7[att
′
i] = x′i, y

′
i

end if
end for
if H8[Λ] exists then η = H8[Λ]

else η $←− Zp, H8[Λ] = η
end if
if H8[Λ

′] exists then η′ = H8[Λ
′]

else η′ $←− Zp, H8[Λ
′] = η′

end if
h++, t← Zp

if Λ = Λ0 then st = 0
else st = 1
end if
return tk = ({(xi, yi)}, {(x′i, y′i)}, gβ

′tgη, gβ
′tgη

′
, gt, st)

end function
function TranGen(L(d,q))

l = {l[s′[q], h]}cs′[q]h=1 , (ind1, · · · , indcs′[q])← SRP[q]
for α ∈ [xt[q]] do

R← RP[q, α] ∪q′∈[|s′|],β∈[xt[q′]] IP[q, q
′, α, β]

for c ∈
[
cs′[q]

]
do

if indc ∈ R then
y

$←− H2[s
′[q′], cs′[q′]]

A← H5[x
′[q, α], indc,Λ[q]]

Trap[c][α] = A

y

H1[s′[q′],cs′[q′]]

else
if ∃ H6[s

′[q],x′[q, α], c, id[q]] then
Trap[c][α] = H6[s

′[q],x′[q, α], c,Λ[q]]
else

Trap[c][α]
$←− G,

H6[s
′[q],x′[q, α], c,Λ[q]] = Trap[c][α]

end if
end if

end for
end for
Token← (l,Trap), Res← Search(Token)
ResInds← ∩ RP[q, α] for α ∈ [xt[q]]
return (Token,Res,ResInds)

end function

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Similarly, the leakage IP is also formulated. Therefore,
we can define x̄[t, α] to record x̄[t1, α] = x̄[t2, β] if
IP[t1, t2, α, β] ̸= ∅, and thus have

x̄[t1, α] = x̄[t2, β]⇒ x[t1, α] = x[t2, β]

and

(x[t1, α] = x[t2, β]) ∧ (DB[s[t1]] ∩ DB[s[t2]] ̸= ∅)
∧ (id[t1] = id[t2])⇒ x̄[t1, α] = x̄[t2, β].

In the simulator, we introduce hash tables H2 and H3,
where H3 is used to generate xtag and H2 is used to
generate Token. In addition, we also introduce hash table
H7 and H8 to record the attribute points and the location
that will be access later.
When it computes the search results ResInds, the simu-
lator directly pulls the values from RP, and thus makes
the final output of queries the same as that in real game.
Since, we have Pr[RealΠA(κ) = 1]−Pr[IdealΠA,S(κ) = 1] ≤
AdvDDH

A,G (κ)+AdvPRFA,Fp
(κ)+AdvDL

A,G(κ)+AdvUnforgeableA,MAC (κ).

Theorem 2. Assume the employed PRFs, hash functions
and MAC in AasBirch are secure, and DL and DDH
assumptions hold in G and GT , hence our scheme is
secure against collusion attacks launched by adversarial clients
under the introduced security model in Section 3.3.

Proof 2. Firstly, we define the game sequence for unforge-
ability of search token, and give an adversary’s winning
advantage analysis between neighbor games:

• Game0 : The game is exactly the same as the real scheme
that defined in Fig. 2. Thus, we have

Pr[CollUFExpΠA = 1] = Pr[Game0 = 1].

• Game1 : In the game, we randomly choose r from Zp,
and replace a secret key Aα = ga with gr . If A can
distinguish Game1 from Game0, then we can build a
simulator B1 to break the DL assumption. Thus, we
have

Pr[Game0 = 1]− Pr[Game1 = 1] ≤ AdvDL
B1
(κ).

• Game2 : In the game, we randomly choose r from Zp,
set Aγ = ga, AαH(wj)/zc = gb and replace a trapdoor
AαγH(wj)/zc = gab with gr. If A can distinguish Game2
from Game1, then we can build a simulator B2 to break
the DDH assumption. Thus, we have

Pr[Game1 = 1]− Pr[Game2 = 1] ≤ AdvDDH
B2

(κ).

• Game3 : In the game, we replace the keyed PRFs (i.e.,
Fp with Kx, Kl, Kz) with a truly random function. If A
can distinguish Game3 from Game2, then we can build
a simulator B3 to distinguish the keyed PRFs from a
truly random function. Thus, we have

Pr[Game2 = 1]− Pr[Game3 = 1] ≤ AdvPRFB3,Fp
(κ).

• Game4 : In the game, we generate proof π for every
transformation key tk, i.e., π = MAC.Sign(K ′, tk). If A
can distinguish Game4 from Game3, then we can build
a simulator B4 to break the IND-CPA security of MAC.
Thus, we have

Pr[Game3 = 1]− Pr[Game4 = 1] ≤ AdvIND−CPA
B4,MAC (κ).

Finally, we may conclude that the advantage of any
adversary forging search token and transformation key
is negligible, since we have Pr[CollUFExpΠA(κ) = 1] −
Pr[Game4 = 1] ≤ AdvDL

B1
(κ)+AdvDDH

B2
(κ)+AdvPRFB3,Fp

(κ)+

AdvIND−CPA
B4,MAC (κ).

6 AASBIRCH: EXPERIMENT AND ANALYSIS

To illustrate practical performance, we conduct extensive
experiments for state-of-the-art solutions and AasBirch in
real cloud environment, and show performance analysis.

6.1 Theoretical Analysis

TABLE 4
Size of Public Parameter, secret key and encrypted files index.

[17] [15] AasBirch

PP 5|G|+ |Zp| 2|G|+ (2n+ 3)|Zp|+MPKABE 2|G|+ 6|Zp|
sk (2n+ 1)|G| (n+ 1)|G|+ 3|Zp|+ skABE 3|G|+ 4|Zp|

EDB O(nk · |Σ| · |DB|) O(|Σ| · |DB|) O(|DB|)

In the table, we let “|G|” denote an element of G, “|Zp|” denote an element
of Zp, “n” denote the base of attribute universe, “nk” denote the number of
keywords of a file and “|Σ|” denote the number of attributes of an encrypted
file, “|DB|” denote the number of files in DB ; “MPKABE, skABE” denote
“master public key, secret key” size of ABE.

In Table 4, we show a more detailed size of public pa-
rameter PP, secret key sk and encrypted files index EDB
to clarify the cost comparison listed in Table 1, where our
AasBirch achieves constant-size PP, sk and EDB while that
of state-of-the-art work [15], [17] are unfortunately related
to a parameterized nk, |Σ| and underlying employed ABE
schemes. Note that [15] should prepare 2n variables for n
attributes, which is considered to be a static small attribute-
universe for user description. Similarly, there are k variables
produced for secret key of a client that described with k
attributes in [15], [17]. However, AasBirch employs a large-
universe description for each client and inherently saves
large parameter size instead of preparing a set of public
tuples.

Furthermore, AasBirch allows data owners to switch
authorization from one attribute-based level policy to an-
other one, while [17] only supports a specified authorization
updating from one user-level to another one. As shown in
Table 5, the cost for switching authorization in AasBirch
is comparable with 5 despite more flexible authorization is
achieved.

TABLE 5
Performance analysis of authorization updating.

Measurement [15] AasBirch

Time Cost O(|Σ|) O(|Σ|)
Parameter Size 2|Σ| · |G| (4|Σ|+ 3)|G|+ |π|

Fine-grained Authorization % "

In the table, we let “|Σ|” denote the number of attributes of an encrypted file,
“|π|” denote the size of a message authentication code.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

6.2 Experiments in Real Cloud Environment

We use HUAWEI Cloud to conduct experiments for the
work [15], [17] and AasBirch, where they are implemented
with 4,000 lines of Python 3 codes. That is, the separately
configured environment of cloud and clients are:

-Cloud: on Ubuntu 18.04 system with an Intel(R) Xeon(R)
CPU E5-2680 v4 @2.40GHz and 8.00 GB RAM;

-Clients: on Ubuntu 18.04 system with an Intel(R)
Core(TM) i5-6200U CPU @2.30GHz and 4.00 GB RAM.

For [15] and AasBirch implemented by Pypbc 0.2 library, we
choose AES-CBC module (key is 256 bits and Initialization
Vector is 128 bits) to encrypt files, SHA-256 as employed
hash functions and curve y2 = x3+x for Type-A pairings (q-
bits=512 and r-bits=160). Moreover, we employ PyCharm to
call BSW ciphertext-policy ABE [28] for realizing [17]’s dy-
namic attribute-based keyword search; and utilize HMAC-
SHA256 from wolfcrypt to instantiate the employed MAC
scheme. In the experiment, the attributes number in an
attribute set Σ or authorization policy Λ are both assumed
to range from 1 to 50.

Dataset. For a respective real-world Email dataset Enron
[26], we randomly choose “MAILDIR/SOLBERG-G” that in-
cludes 1,081 files as a partially testing dataset of Enron. In
addition, we extract a set of keywords from the context
of each email by PyTextRank 3.2.2 [29]. Accordingly, the
number of keywords (#KWD) in a searching query varies
from 1 to 50.

6.3 Performance Analysis

We examine the performance from system initialization, file
encryption, policy switching and file retrieval phases.

6.3.1 System Initialization

The system initialization includes Setup and KeyGen algo-
rithms, where we show a time cost comparison about setup
and KeyGen between DABKS [17], Zhang et al.’s SE [15] and
AasBirth in Fig. 3(a) and Fig 3(b). Along with the growth
of attribute number |Σ|, the time of setup in [15] grows and
reaches 0.5 seconds when |Σ|=100, while AasBirch main-
tains a fixed 0.01 seconds time cost and runs faster than [15].
Nevertheless, the key generation time cost of AasBirch is
slower than [15], [17], we say the cost can be accepted
when |Σ| = 50 as depicted in Fig. 3(b). Moreover, an entity
is usually described with approximately 50 attributes in
practice.

Moreover, Table. 6 shows public parameter PP and secret
key sk size comparison. When |Σ|=50, [15] needs 63.5 KB for
storing PP, while [17] and AasBirch only needs 0.88 KB and
0.49 KB constant-size storage cost respectively. In particular,
AasBirch reaches 250× smaller than [15] when |Σ|=100.
Similarly, the storage cost of sk in AasBirch still holds a
constant-size 0.36 KB. When |Σ|=100, AasBirch achieves
roughly 74× and 200× smaller than [17] and [15] respec-
tively. Accordingly, we may conclude that AasBirth runs
faster in setup but slightly slower in KeyGen, and greatly
saves PP and sk storage cost.

(a) Time cost of setup

(b) Time cost of key generation

Fig. 3. Time cost of system initialization phase

TABLE 6
Size of Public Parameter and secret key

|Σ| Public Parameter (KB) Secret Key (KB)
[17] [15] AasBirch [17] [15] AasBirch

10

0.88

14.5

0.49

2.8 10.0

0.36

20 26.8 5.4 19.4
30 39.0 8.0 28.7
40 51.3 10.7 38.1
50 63.5 13.3 47.5
60 75.8 15.9 56.8
70 88.0 18.9 66.2
80 100.3 21.2 75.6
90 112.5 23.9 84.9
100 124.8 26.5 71.4

6.3.2 File Encryption

To evaluate performance of encryption Encrypt algorithm,
we first note that the file encryption in AasBirch should
essentially include Encrypt and TKGen algorithms. This is
because data owners run Encrypt under a dummy autho-
rization policy Λ0 and need to produce an actual authoriza-
tion Λ via TKGen for the cloud. Table. 7 shows an efficiency
comparison, where AasBirth encrypts keywords and files
together with less than 650 seconds where the attribute
number |Σ| ranges from 10 to 100. In particular, it achieves
16× and 14× faster when |Σ| = 50 respectively, compared
to DABKS [17] and Zhang et al.’s system [15]. With |Σ|
increasing, the encryption cost in AasBirch slightly rises
and accordingly achieves even 23× (resp. 20×) faster when
|Σ| = 100 than [17] (resp. [15]). In particular, we observe
that the consumed time cost of Encrypt in our AasBirch is

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

actually fixed to 360 seconds since the algorithm only deal
with a dummy authorization policy Λ0.

TABLE 7
Time cost of file encryption (minutes).

|Σ| 10 20 30 40 50 60 70 80 90 100

[17] 37.9 62.1 86.9 111.9 135.7 158.8 183.2 206.8 234.1 257.2
[15] 31.9 52.4 73.2 93.7 114.3 134.9 156.0 176.5 197.4 216.8

AasBirch 6.8 7.2 7.6 8.1 8.5 8.9 9.3 9.8 10.3 10.6

Furthermore, encrypting indexes may produce
WSET.DAT and EDB.DAT files, which are stored in the
client side. As can be seen in Table 8, the storage cost of
EDB.DAT for [15], [17] increase along with attribute number
and requires 0.74 GB and 1.82 GB respectively when
|Σ| = 100. However, AasBirch only requires 0.02 GB storage
cost regardless of different |Σ|. For [15] and AasBirch,
the storage of Wset are fixed to 229.8 KB and 234 KB
respectively.

TABLE 8
Size of encrypted indexes EDB (GB).

|Σ| 10 20 30 40 50 60 70 80 90 100

[17] 0.08 0.16 0.23 0.30 0.38 0.45 0.52 0.60 0.67 0.74
[15] 0.22 0.40 0.58 0.76 0.93 1.11 1.29 1.47 1.64 1.82

AasBirch 0.028

Hence, we may conclude that AasBirch greatly reduces
time cost and storage cost of file encryption phase, since the
cost-expensive encrypted file generation and transformation
are efficiently and securely transferred to the cloud.

6.3.3 Policy Switching
The policy switching phase includes TKGen and AuzAdp
algorithms. We manually vary the number of attributes in a
switching authorization from 20 to 100. Concretely for our
AasBirch, Fig. 4 shows the time cost of client generating
a new authorization policy, which is bounded up to 0.75
seconds. Fig. 4 also shows time cost of cloud transforming
encrypted files (EDB) under one authorization into another
one, where it ranges from 60 seconds to 78 seconds. It can
be concluded that: (i) the main overhead of policy switching

Fig. 4. Time cost of TKGen and AuzAdp algorithms in AasBirch

phase falls on the cloud server side, while the time cost for
client side is lightweight; (ii) the time cost of TKGen and
AuzAdp is related to assumed number of attributes in an
authorization.

6.3.4 File Retrieval
The file retrieval phase includes TrapGen,Search and
Retrieve algorithms.

To clarify the performance of TrapGen, we show a com-
parison for token generation cost between [15], [17] and
AasBirth in Fig. 5. As can be seen in Table. 5, the time cost
of [15], [17] increase with the increment of attribute number
|Σ|, which is influenced by both the number of keywords
(#KWD) in a query and the number of attribute set |Σ| of
a client. And [17] are rising faster while [15] brings about
more overhead. Alternatively, AasBirch almost achieves a
fixed cost for a same #KWD (as depicted in Fig. 6(a)), which
is relatively related with #KWD and independent of |Σ|. In
particular, AasBirch achieves 2× and 25× faster than [15],
[17] respectively when #KWD=5 and |Σ| = 50, and even
80× faster than [15] when #KWD=10 and |Σ| = 100. For
our AasBirch, we additionally measure search token stor-
age cost (TOKEN.DAT) in Fig. 6(b) with different s-term,
where it increases with WSet and produces large storage
overhead with s-term increases. In particular, the token size
is 60 KB When s-term=43 and WSet=10 (the worst case),
which it only requires almost 1.2 seconds to be sent from
client side to the cloud as shown in Fig. 6(c). In Fig. 6(c),
we give detailed communication cost for sending a search
token that relates to different s-term and Wset as Fig. 6(b),
where the communication cost are all less than 1.2 seconds.
Hence, AasBirch indeed shows practical efficiency for token
generation, storage and client-to-cloud communication cost.

To illustrate the performance of Search, we show a
comparison for searching cost between [15], [17] and Aas-
Birth in Table. 9. The traditional dynamic ABKS [17] nearly
consumes 0.2 hour for processing a single keyword search
where #KWD=10, and rapidly increase with #KWD and |Σ|
rising. However, the searching cost in [15] is independent of
#KWD but a little relatively related to |Σ|. Particularly for
Σ=40 and #KWD=6, AasBirch outperforms 28,800× (resp.
34×) faster than DABKS [17] (resp. [15]) by setting s-
term=21. It can be deduced that the larger the Σ, #KWD and
the smaller the s-term, the more cost savings by AasBirch
will be obtained. For example, AasBirch may run 70,000×
faster than known dynamic ABKS system [17] when Σ=100
and #KWD=10. For further observing the influence of s-
term, Wset and |Σ|, we show searching time cost distribu-
tion in Fig. 7(a) and Fig. 7(b). As can be seen in Fig. 7(a),
the searching time cost under different |Σ| varies within a
same range; while it is easily influenced by the value of
s-term as shown in Fig. 7(b). In particular, searching time
is 0.1 seconds When s-term=1 and #KWD=10; and is still
no more than 0.4 seconds under s-term=10 and #KWD=10.
Although the searching time cost grows along with an
increment of s-term, it achieves high efficiency that less than
0.5 seconds. Hence, we can see that s-term has oblivious
influence in searching time cost in AasBirch and [15], but
AasBirch is actually highly efficient and independent of |Σ|
in AasBirch since no (semi-)black-box implementation of
ABE is employed.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Fig. 5. Time cost of token generation of AasBirth

(a) Search token generation time cost (b) Search token size (c) Search token communication cost

Fig. 6. Time cost for token generation, token storage and client-to-cloud communication in AasBirch

TABLE 9
Searching time cost comparison between AasBirch (#s-term=21) and state-of-the-art solutions.

|Σ|
#KWD=2 #KWD=3 #KWD=4 #KWD=5 #KWD=6 #KWD=7 #KWD=8 #KWD=9 #KWD=10

[17] [15] Ours [17] [15] Ours [17] [15] Ours [17] [15] Ours [17] [15] Ours [17] [15] Ours [17] [15] Ours [17] [15] Ours [17] [15] Ours

10 0.40h 4.5s 0.19s 0.60h 6.7s 0.26s 0.80h 9.1s 0.36s 1.00h 11.5s 0.41s 1.20h 13.8s 0.53s 1.40h 16.2s 0.57s 1.60h 18.6s 0.73s 1.80h 20.8s 0.77s 2.00h 23.8s 0.82s
20 0.71h 5.1s 0.23s 1.07h 7.7s 0.27s 1.43h 10.2s 0.34s 1.78h 12.9s 0.45s 2.14h 15.6s 0.50s 2.51h 18.3s 0.56s 2.86h 21.4s 0.65s 3.23h 24.3s 0.71s 3.59h 27.4s 0.84s
30 1.03h 5.2s 0.19s 1.54h 7.9s 0.28s 2.05h 10.5s 0.34s 2.56h 13.4s 0.43s 3.08h 16.4s 0.50s 3.58h 19.6s 0.58s 4.11h 22.8s 0.66s - 25.9s 0.73s - 29.2s 0.82s
40 1.33h 5.3s 0.18s 2.00h 8.0s 0.27s 2.66h 10.8s 0.37s 3.33h 14.0s 0.43s 4.00h 17.0s 0.50s - 20.5s 0.58s - 24.0s 0.67s - 27.8s 0.82s - 32.0s 0.83s
50 1.67h 5.4s 0.20s 2.52h 8.3s 0.26s 3.36h 11.3s 0.34s 4.19h 14.5s 0.49s - 17.9s 0.51s - 21.3s 0.62s - 25.1s 0.65s - 29.0s 0.82s - 33.0s 0.83s
60 1.95h 5.5s 0.18s 2.91h 8.5s 0.26s 3.89h 11.9s 0.35s - 15.3s 0.42s - 18.8s 0.50s - 22.4s 0.62s - 26.4s 0.66s - 30.8s 0.73s - 35.7s 0.79s
70 2.25h 5.5s 0.18s 3.37h 8.5s 0.27s - 11.8s 0.36s - 15.3s 0.43s - 19.2s 0.49s - 23.2s 0.58s - 27.4s 0.66s - 31.9s 0.80s - 36.6s 0.81s
80 2.57h 5.6s 0.18s 3.83h 8.8s 0.27s - 12.3s 0.36s - 15.9s 0.43s - 19.9s 0.49s - 24.2s 0.58s - 28.6s 0.66s - 33.3s 0.80s - 38.7s 0.81s
90 2.95h 5.6s 0.19s - 8.8s 0.30s - 12.3s 0.34s - 16.2s 0.42s - 20.5s 0.50s - 25.2s 0.57s - 29.8s 0.70s - 34.6s 0.76s - 40.1s 0.82s
100 3.20h 5.7s 0.19s - 9.0s 0.25s - 12.9s 0.33s - 16.9s 0.41s - 21.4s 0.49s - 25.9s 0.57s - 30.9s 0.65s - 36.2s 0.77s - 41.9s 0.80s

In the table, we highlight the best in “•” and the worst in “•” under different attributes in an attribute set Σ of AasBirch. We denote “-” as “> 4.16 hours (i.e.,
15,000 seconds)” that omitted to test.

To clarify practical utility of Retrieve, we see the time
cost of encrypted indexes retrieval, encrypted files receiving and
encrypted files decryption step-by-step in Fig. 8. As depicted
in Fig. 8(a), the time cost for retrieving one file index

converges to 0.01 seconds, which is a sufficient low cost
for clients. In Fig. 8(b), it shows that the consumed time
distribution between client’s sending request and server’s
returning result. That is, most of the file receiving overhead

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

(a) Different attribute set |Σ|

(b) Different s-term and Wset

Fig. 7. Searching cost with different s-term, Wset and |Σ| in AasBirch

are around 0.2 seconds. Fig. 8(c) shows encrypted files
decryption overhead of clients, where it is highly efficient
with nearly 0.001 seconds. Ultimately, we may conclude that
the Retrieve algorithm for a client is efficient enough and
highly acceptable for practical secure cloud search services.

6.3.5 Summary
Generally, AasBirth enjoys better time and communication
efficiency of system initialization, document encryption and
document search. The system-running cost of [17]’s ABKS
is related to the base of attribute universe |U|, the number
of attributes of an encrypted document |Σ| and the number
of keywords associated with a document |Wset|. While the
main factors that influence the performance of [15] and our
AasBirch are the s-term (the least frequent keyword in a
query) and the number of keywords in a query q. Compared
to [15], the efficiency of system initialization in our AasBirch
is independent of the base of attribute universe |U| and the
number of attributes of an encrypted document |Σ|.

7 RELATED WORK

In the following, we discueesion the related work in
1ddddd(ABKS, ddddMCSSE. Attribute-Based Keyword
Search. With an adoption of proxy re-encryption primitive,
Liang et al. [8] proposed a novel ABKS scheme that simul-
taneously achieves encrypted data sharing and keyword
search. Zheng et al. [7] introduced the notion of verifiable
ABKS, which allows clients to verify whether the cloud
honestly runs the searching process. By employing user
revocation technique, Sun et al. [9] presented a scalable
ABKS that supports fine-grained owner-enforced search
authorization. For outsourced ABKS with key-issuing and

(a) Encrypted Indexes Retrivial

(b) Encrypted Dcouments Receiving

(c) Encrypted Documents Decryption

Fig. 8. Time cost for retrieving encrypted file index, receiving/decrypting
encrypted indexes, where only one file assumed to satisfy query pattern

data outsourcing decryption, a KSF-OABE presented by Li
et al. [10] only supports partial encrypted data retrieval that
related with the issued keyword. To enhance user privacy,
Wang et al. [19] proposed an effective hidden policy ABKS
that realizes constant-size keyword search and documents
storage. Xue et al. [30] proposed a robust and auditable
access control for enhancing authorization in cloud storage
services.

Nevertheless, these schemes constructed based on black-
box or semi-black-box implementation of ABE, which leads
to restricted query models and costly running overhead.
(Multi-client) Symmetric Searchable Encryption. Cash et
al. [20] introduced a novel highly-scalable SSE scheme with
the support of sub-linear boolean queries, where a s-term
is introduced and employed to locate the least set of files
under inverted index data structure. By employing blind
storage technique, Naveed et al. [31] introduced an efficient
SSE scheme that the cloud does not learn how many files
are stored that belong to a data owner. Following [20], Sun
et al. [11], [13], Kermanshahi et al. [32], Zeng et al. [12],

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Zhang et al. [15] studied the multi-client setting of SSE
supporting boolean queries, which covers a variety of exten-
sion (e.g., fast efficiency, fine-grained authorization, public-
key situation). Recently, Du et al. [14] combined a client’s
authorization information into search tokens and encrypted
indexes, and thus proposed a DM-SSE scheme that allows a
data owner to authorize multiple clients to perform boolean
queries. Moreover, forward privacy and backward privacy
have been formally considered for MC-SSE by [33], [34] that
extended from [35], [36], [37]. Very recently, Du et al. [14]
presented a dynamic MC-SSE scheme where data owners
can update the search authorization of a data user, but it
does not work with fine-grained authorization.

To summarize, a variety of desirable features are studied
in existing MC-SSE solutions, such as boolean queries, fine-
grained access control or forward and backward security.
However, existing MC-SSE systems with fine-grained au-
thorization have not well-considered authorization dynamic
updating, and system-running time and storage efficiency
can be further optimized. Consequently, the purpose of the
work is to propose a dynamic and effective cloud-based file
retrieval system with dynamic fine-grained authorization.

8 CONCLUSION

In this work, an AasBirch system for secure multi-client
cloud search services is presented that allows data owners
to flexibly switch enforced authorization. Furthermore, the
realization for such authorization is direct and lightweight,
which is not a (semi-)black-box implementation of ABE
frameworks as existing solutions. In addition, AasBirch
achieves constant-size public parameter, secret key and en-
crypted files indexes, where the overhead of file encrypting,
authorization switching and file searching are also highly
efficient. Nevertheless, the direct authorization considered
in AasBirch is assumed as an “AND”-gate formula, while
not supporting such as “OR”, “Threshold” even “NOT”
access control policy. Hence, it seems an interesting work
for enabling AasBirch to support direct and more expressive
authorization formulas.

ACKNOWLEDGMENTS

This work was supported by National Natural Sci-
ence Foundation of China (U1936213, 61872230, 61972094,
62032005), Shanghai Rising-Star Program (22QA1403800)
and Program of Shanghai Academic Research Leader
(21XD1421500).

REFERENCES

[1] “Share of corporate data stored in the cloud in organiza-
tions worldwide from 2015 to 2021,” https://www.statista.com/
statistics/1062879/worldwide-cloud-storage-of-corporate-data/.

[2] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet computing, vol. 16, no. 1, pp. 69–73, 2012.

[3] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” ACM Computing Surveys (CSUR),
vol. 47, no. 2, pp. 1–51, 2014.

[4] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in 2000 IEEE Symposium on Security
and Privacy, 2000, pp. 44–55.

[5] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology -
EUROCRYPT 2004, Proceedings, 2004, pp. 506–522.

[6] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in 2010
Proceedings IEEE INFOCOM. Ieee, 2010, pp. 1–9.

[7] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: verifiable attribute-
based keyword search over outsourced encrypted data,” in 2014
IEEE Conference on Computer Communications, INFOCOM, 2014, pp.
522–530.

[8] K. Liang and W. Susilo, “Searchable attribute-based mechanism
with efficient data sharing for secure cloud storage,” IEEE Trans.
Information Forensics and Security, vol. 10, no. 9, pp. 1981–1992,
2015.

[9] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: Verifiable attribute-based keyword search with fine-grained
owner-enforced search authorization in the cloud,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 4, pp. 1187–1198, 2016.

[10] J. Li, X. Lin, Y. Zhang, and J. Han, “KSF-OABE: outsourced
attribute-based encryption with keyword search function for
cloud storage,” IEEE Trans. Services Computing, vol. 10, no. 5, pp.
715–725, 2017.

[11] S. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An
efficient non-interactive multi-client searchable encryption with
support for boolean queries,” in Computer Security - ESORICS
2016 - 21st European Symposium on Research in Computer Security,
Proceedings, Part I, 2016, pp. 154–172.

[12] M. Zeng, K. Zhang, H. Qian, X. Chen, and J. Chen, “A searchable
asymmetric encryption scheme with support for boolean queries
for cloud applications,” The Computer Journal, vol. 62, no. 4, pp.
563–578, 2019.

[13] S.-F. Sun, C. Zuo, J. K. Liu, A. Sakzad, R. Steinfeld, T. H. Yuen,
X. Yuan, and D. Gu, “Non-interactive multi-client searchable en-
cryption: Realization and implementation,” IEEE Transactions on
Dependable and Secure Computing, 2020, https://doi.org/10.1109/
TDSC.2020.2973633.

[14] L. Du, K. Li, Q. Liu, Z. Wu, and S. Zhang, “Dynamic multi-
client searchable symmetric encryption with support for boolean
queries,” Information Sciences, vol. 506, pp. 234–257, 2020.

[15] K. Zhang, M. Wen, R. Lu, and K. Chen, “Multi-client sub-linear
boolean keyword searching for encrypted cloud storage with
owner-enforced authorization,” IEEE Transactions on Dependable
and Secure Computing, 2020, https://doi.org/10.1109/TDSC.2020.
2968425.

[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, CCS 2006, Proceedings, pp. 89–98.

[17] B. Hu, Q. Liu, X. Liu, T. Peng, G. Wang, and J. Wu, “Dabks:
Dynamic attribute-based keyword search in cloud computing,” in
2017 IEEE International Conference on Communications (ICC). IEEE,
2017, pp. 1–6.

[18] J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang, and K. Ren, “Enabling
generic, verifiable, and secure data search in cloud services,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 8, pp. 1721–1735, 2018.

[19] H. Wang, J. Ning, X. Huang, G. Wei, G. S. Poh, and X. Liu, “Secure
fine-grained encrypted keyword search for e-healthcare cloud,”
IEEE Transactions on Dependable and Secure Computing, pp. 1–1,
2019.

[20] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Advances in Cryptology -
CRYPTO 2013, Part I, 2013, pp. 353–373.

[21] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Out-
sourced symmetric private information retrieval,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 875–888.

[22] S. Kamara and T. Moataz, “Boolean searchable symmetric en-
cryption with worst-case sub-linear complexity,” in Advances in
Cryptology - EUROCRYPT 2017, Proceedings, Part III, 2017, pp. 94–
124.

[23] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and
M. Steiner, “Rich queries on encrypted data: Beyond exact
matches,” in European symposium on research in computer security.
Springer, 2015, pp. 123–145.

[24] J. Lai, R. H. Deng, Y. Yang, and J. Weng, “Adaptable ciphertext-
policy attribute-based encryption,” in International Conference on
Pairing-Based Cryptography. Springer, 2013, pp. 199–214.

[25] S. Hohenberger and B. Waters, “Online/offline attribute-based

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

https://www.statista.com/statistics/1062879/worldwide-cloud-storage-of-corporate-data/
https://www.statista.com/statistics/1062879/worldwide-cloud-storage-of-corporate-data/
https://doi.org/10.1109/TDSC.2020.2973633
https://doi.org/10.1109/TDSC.2020.2973633
https://doi.org/10.1109/TDSC.2020.2968425
https://doi.org/10.1109/TDSC.2020.2968425

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

encryption,” in International workshop on public key cryptography.
Springer, 2014, pp. 293–310.

[26] “Enron dataset,” http://www.cs.cmu.edu/∼./enron/.
[27] “Huaweicloud,” https://www.huaweicloud.com/.
[28] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy

attribute-based encryption,” in 2007 IEEE symposium on security
and privacy (SP’07). IEEE, 2007, pp. 321–334.

[29] “Pytextrank,” https://spacy.io/universe/project/
spacy-pytextrank.

[30] K. Xue, Y. Xue, J. Hong, W. Li, H. Yue, D. S. Wei, and P. Hong,
“Raac: Robust and auditable access control with multiple attribute
authorities for public cloud storage,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 12, no. 4, pp. 953–967, 2017.

[31] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic search-
able encryption via blind storage,” in 2014 IEEE Symposium on
Security and Privacy. IEEE, 2014, pp. 639–654.

[32] S. K. Kermanshahi, J. K. Liu, R. Steinfeld, S. Nepal, S. Lai, R. Loh,
and C. Zuo, “Multi-client cloud-based symmetric searchable en-
cryption,” IEEE Transactions on Dependable and Secure Computing,
2019, https://doi.org/10.1109/TDSC.2019.2950934.

[33] A. Bakas and A. Michalas, “Multi-client symmetric searchable
encryption with forward privacy.” IACR Cryptol. ePrint Arch., vol.
2019, p. 813, 2019.

[34] Q. Gan, X. Wang, D. Huang, J. Li, D. Zhou, and C. Wang, “Towards
multi-client forward private searchable symmetric encryption in
cloud computing,” IEEE Transactions on Services Computing, 2021,
https://doi.org/10.1109/TSC.2021.3087155.

[35] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and
R. Jalili, “New constructions for forward and backward private
symmetric searchable encryption,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 1038–1055.

[36] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic
searchable symmetric encryption with forward and stronger back-
ward privacy,” in European Symposium on Research in Computer
Security. Springer, 2019, pp. 283–303.

[37] Y. Zheng, R. Lu, J. Shao, F. Yin, and H. Zhu, “Achieving practical
symmetric searchable encryption with search pattern privacy over
cloud,” IEEE Transactions on Services Computing, 2020, https://doi.
org/10.1109/TSC.2020.2992303.

Kai Zhang received the Bachelor’s degree with
Computer Science and Technology from Shan-
dong Normal University, China, in 2012, and
the Ph.D. degree with Computer Science and
Technology from East China Normal University,
China, in 2017. He visited Nanyang Technologi-
cal University in 2017. He is currently an Asso-
ciate Professor with Shanghai University of Elec-
tric Power, China. His research interest includes
applied cryptography and information security.

Xiwen Wang received the bachelor’s degree
from Shanghai University of Electric Power,
China, in 2021. He is currently pursuing his mas-
ter degree in College of Computer Science and
Technology from Shanghai University of Elec-
tric Power, China. His research interests include
cloud security and applied cryptography.

Jianting Ning received the Ph.D. degree from
the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, in 2016.
He is currently a Professor with Fujian Provin-
cial Key Laboratory of Network Security and
Cryptology, College of Computer and Cyber Se-
curity, Fujian Normal University, China. Previ-
ously, he was a Research Scientist at the School
of Computing and Information Systems, Singa-
pore Management University. He has published
papers in major conferences/journals, such as

ACM CCS, ASIACRYPT, ESORICS, ACSAC, IEEE TIFS, and IEEE
TDSC. His research interests include applied cryptography and infor-
mation security.

Mi Wen received the M.S. degree in Computer
Science from University of Electronic Science
and Technology of China in 2005 and the Ph.D.
degree in computer science from Shanghai Jiao
Tong University, Shanghai, China in 2008. She is
currently a Professor of the College of Computer
Science and Technology, Shanghai University of
Electric Power. From May 2012 to May 2013, she
was a visiting scholar at University of Waterloo,
Canada. She serves Associate Editor of Peer-
to Peer Networking and Applications (Springer).

She keeps acting as the TPC member of some flagship conferences
such as IEEE INFOCOM, IEEE ICC, IEEE GLOEBECOM, etc from
2012. Her research interests include privacy preserving in wireless
sensor network, smart grid etc

Rongxing Lu is an associate professor, Uni-
versity Research Scholar, at the Faculty of
Computer Science (FCS), University of New
Brunswick (UNB), Canada. Before that, he
worked as an assistant professor at the
School of Electrical and Electronic Engineering,
Nanyang Technological University (NTU), Singa-
pore from April 2013 to August 2016. Rongxing
Lu worked as a Postdoctoral Fellow at the Uni-
versity of Waterloo from May 2012 to April 2013.
He was awarded the most prestigious “Governor

General’s Gold Medal”, when he received his PhD degree from the
Department of Electrical & Computer Engineering, University of Water-
loo, Canada, in 2012; and won the 8th IEEE Communications Society
(ComSoc) Asia Pacific (AP) Outstanding Young Researcher Award, in
2013. Dr. Lu is an IEEE Fellow.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3227650

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:48:01 UTC from IEEE Xplore. Restrictions apply.

http://www.cs.cmu.edu/~./enron/
https://www.huaweicloud.com/
https://spacy.io/universe/project/spacy-pytextrank
https://spacy.io/universe/project/spacy-pytextrank
https://doi.org/10.1109/TDSC.2019.2950934
https://doi.org/10.1109/TSC.2021.3087155
https://doi.org/10.1109/TSC.2020.2992303
https://doi.org/10.1109/TSC.2020.2992303

	Introduction
	Our Results

	Background Knowledge
	Problem Formulation
	System Model
	Design Goals
	Security Guarantee Model
	Security against adversarial server
	Security against adversarial clients

	AasBirch: System Description
	High-level Description
	Technique Overview
	AasBirch system with conjunctive queries
	Correctness Guarantee
	The correctness of authorization switching
	The correctness of file searching

	Discussion and Extension
	Fine-grained Authorization towards Multiple Clients
	Enhanced AasBirch system with boolean queries

	AasBirch: Security Analysis
	Security Analysis

	AasBirch: Experiment and Analysis
	Theoretical Analysis
	Experiments in Real Cloud Environment
	Performance Analysis
	System Initialization
	File Encryption
	Policy Switching
	File Retrieval
	Summary

	Related work
	Conclusion
	References
	Biographies
	Kai Zhang
	Xiwen Wang
	Jianting Ning
	Mi Wen
	Rongxing Lu

